Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Mehmet Akkurt, ${ }^{\text {a* }}$ Ismail Çelik, ${ }^{\text {b }}$ Kıymet Berkil, ${ }^{\text {c }}$ Ahmet Tutar, ${ }^{\text {d }}$ Cem Cüneyt Ersanlı, ${ }^{\text {e }}$ Osman Çakmak ${ }^{\text {c }}$ and Orhan Büyükgüngör ${ }^{\mathbf{e}}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, University of Erciyes, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Physics, Faculty of Arts and Sciences, University of Cumhuriyet, 06532 Sivas, Turkey, 'Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpaşa University, 60240 Tokat, Turkey, d Department of Chemistry, Faculty of Arts and Sciences, Sakarya University, Esentepe, 54140 Sakarya, Turkey, and ${ }^{\mathbf{e}}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139, Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$
R factor $=0.041$
$w R$ factor $=0.073$
Data-to-parameter ratio $=24.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(1RS,2SR)-1,2,4,5,7-Pentabromo-5-methoxyindane

In the title compound, $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}_{5} \mathrm{O}$, prepared by bromination of 5-methoxyindane, all bond lengths and angles are in the usual ranges. However, the relatively wide range of $\mathrm{Br}-\mathrm{C}-\mathrm{C}$ angles $\left[107.2(5)-117.0(4)^{\circ}\right]$ in the five-membered ring may indicate repulsion between the neighbouring Br atoms. The crystal packing is stabilized by van der Waals interactions.

Comment

Indanes are present in a large number of natural products and in compounds of pharmaceutical importance (Quiclet-Sire et al., 1999, and references therein). Indane-derived chiral ligands have also found application in transition metal-catalyzed processes (Zhang et al., 2003, and references therein). Bromination of hydrocarbons often leads to useful intermediates used in the synthesis of bromoorganic compounds. These materials have numerous industrial applications as pesticides, plastics, fire retardants and pharmaceutical chemicals (Hileman, 1993). Bromoindanes are important key intermediates in the industrial and laboratory preparation of hydroxy and epoxide compounds (Crosman et al., 2004), and of indenone and fluorenone compounds (Tutar et al., 2001).

(II)

In the title compound, (II) (Fig. 1), prepared by bromination of 5-methoxyindane, (I), all bond lengths and angles (Table 1) are in the usual ranges observed in related structures (Allen et al., 1987; Çelik et al., 2002; Hökelek et al., 1990, 1991, 1998; Akkurt et al., 2004). The five-membered ring adopts the envelope conformation, with puckering parameters (Cremer \& Pople, 1975) $Q_{2}=0.309(8) \AA$ and $\varphi_{2}=70.5(15)^{\circ}$. The five $\mathrm{Br}-\mathrm{C}$ distances in (II) range from 1.884 (7) to 1.980 (7) \AA. The relatively wide range of $\mathrm{Br}-\mathrm{C}-\mathrm{C}$ angles [107.2 (5)$117.0(4)^{\circ}$] in the five-membered ring may indicate repulsion between the neighbouring Br atoms.

There are no unusual short contacts between the molecules in (II). The crystal packing (Fig. 2) is stabilized by van der Waals interactions.

Received 4 January 2005 Accepted 12 January 2005 Online 29 January 2005

Figure 1
The molecular structure of (II). Displacement ellipsoids are drawn at the 50\% probability level.

Figure 2
Packing diagram of (II), viewed approximately along [101].

Experimental

The title compound was prepared by bromination of 5-methoxyindane according to the following procedure. An excess of bromine was added to a solution of 5-methoxyindane in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at below 273 K and allowed to stand for three weeks in a refrigerator. The reaction progress was monitored by thin-layer chromatography. After consumption of 5-methoxyindane, the excess bromine and solvent were removed at reduced pressure and at 293 K . The residue was crystallized from hexane-dichloromethane $(1: 5,12 \mathrm{ml})$ at room temperature over a period of 1 d to give colourless block-like crystals (yield: 18%, m.p. $458-460 \mathrm{~K}$).

Crystal data
$\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Br}_{5} \mathrm{O}$
$M_{r}=542.66$
Triclinic, $P \overline{1}$
$a=8.8895$ (11) A
$b=8.9281$ (10) Å
$c=9.6787(13) \AA$
$\alpha=98.382(10)^{\circ}$
$\beta=113.160(10)^{\circ}$
$\gamma=101.060(9)^{\circ}$
$V=671.99(16) \AA^{3}$

$$
Z=2
$$

$D_{x}=2.682 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $\mathrm{K} \alpha$ radiation
Cell parameters from 7984
reflections
$\theta=2.4-29.5^{\circ}$
$\mu=14.93 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Block, colourless
$0.55 \times 0.41 \times 0.26 \mathrm{~mm}$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: by integration (X-RED32; Stoe \& Cie, 2002)
$T_{\text {min }}=0.045, T_{\text {max }}=0.112$
13393 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.074$
$S=0.81$
3563 reflections
146 parameters
H-atom parameters constrained

3563 independent reflections
1562 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.167$
$\theta_{\text {max }}=29.6^{\circ}$
$h=-12 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0213 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.49 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.67 \mathrm{e}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.0076 (5)

Table 1
Selected geometric parameters $\left.\left(\AA^{\circ}\right)^{\circ}\right)$.

$\mathrm{Br} 1-\mathrm{C} 3$	$1.930(7)$	$\mathrm{Br} 5-\mathrm{C} 9$	$1.884(7)$
$\mathrm{Br} 2-\mathrm{C} 4$	$1.980(7)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.368(9)$
$\mathrm{Br} 3-\mathrm{C} 6$	$1.889(7)$	$\mathrm{O} 1-\mathrm{C} 10$	$1.445(10)$
$\mathrm{Br} 4-\mathrm{C} 8$	$1.889(6)$		
$\mathrm{C} 7-\mathrm{O} 1-\mathrm{C} 10$	$112.5(6)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 6$	$122.2(6)$
$\mathrm{Br} 1-\mathrm{C} 3-\mathrm{C} 2$	$112.9(5)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 8$	$120.3(6)$
$\mathrm{Br} 1-\mathrm{C} 3-\mathrm{C} 4$	$117.0(4)$	$\mathrm{Br} 4-\mathrm{C} 8-\mathrm{C} 7$	$117.2(5)$
$\mathrm{Br} 2-\mathrm{C} 4-\mathrm{C} 3$	$112.6(5)$	$\mathrm{Br} 4-\mathrm{C} 8-\mathrm{C} 9$	$120.8(5)$
$\mathrm{Br} 2-\mathrm{C} 4-\mathrm{C} 5$	$107.2(5)$	$\mathrm{Br} 5-\mathrm{C} 9-\mathrm{C} 1$	$118.1(6)$
$\mathrm{Br} 3-\mathrm{C} 6-\mathrm{C} 5$	$121.1(5)$	$\mathrm{Br} 5-\mathrm{C} 9-\mathrm{C} 8$	$122.2(5)$
$\mathrm{Br} 3-\mathrm{C} 6-\mathrm{C} 7$	$117.9(6)$		

H atoms were geometrically positioned and refined with fixed individual displacement parameters $\left[U_{\text {iso }}(H)=1.2-1.5 U_{\text {eq }}(\mathrm{C})\right]$ using a riding model, with $\mathrm{C}-\mathrm{H}=0.98(\mathrm{CH}), 0.97\left(\mathrm{CH}_{2}\right)$ and $0.96 \AA\left(\mathrm{CH}_{3}\right)$.

Data collection: $X-A R E A$ (Stoe \& Cie, 2002); cell refinement: $X-A R E A$; data reduction: $X-R E D 32$ (Stoe \& Cie, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS-II diffractometer (purchased under grant F. 279 of the University Research Fund). The authors are indebted to the Department of Chemistry (Gaziosmanpaşa University) for financial support (grant Nos. 2001/30 and 2002/12).

References

Akkurt, M, Çelik, İ., Erenler, R., Çakmak, O., Ersanlı, C. C. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o2096-o2098.

organic papers

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Çelik, İ., Tutar, A., Akkurt, M., Özcan, Y. \& Çakmak, O. (2002). Acta Cryst. E58, o314-o316.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Crosman, A., Gelbard, G., Poncelet, G. \& Porvulescu, V. I. (2004). Appl. Catal. $A, 264,23-32$.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Hileman, B. (1993). Chem. Eng. News, 19, 11-13.
Hökelek, T., Çakmak, O. \& Balcı, M. (1990). Acta Cryst. C46, 1906-1908.
Hökelek, T., Çakmak, O. \& Balcı, M.(1991). Acta Cryst. C47, 1672-1675.
Hökelek, T., Çakmak, O. \& Tutar, A. (1998). J. Chem. Crystallogr. 28, 433-436.
Quiclet-Sire, T.-M. B., Sortais, B. \& Zard, S. Z. (1999). Tetrahedron Lett. 40, 2533-2536.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany.
Tutar, A., Çakmak, O. \& Balcı, M. (2001). Tetrahedron, 57, 9759-9763.
Zhang, M., Zhu, L. \& Ma, X. (2003). Tetrahedron Asymmetry, pp. 34473453.

